

Physics Scotland

SUPA IAC – 11th May 2017 Particle Physics

Theme Leader: Victoria Martin (Edinburgh) (since October 2016) previously Paul Soler (Glasgow)

Institutes: University of Glasgow & University of Edinburgh

Funding: STFC: consolidated grants, project grants, fellowships plus: EPSRC, ERC, Intel, Royal Society, EC Horizon 2020 ...

Particle Physics: Current Research Overview

Experiments:

- Large Hadron Collider at CERN: ATLAS and LHCb
- Quark flavour physics: LHCb and NA48 (CERN)
- Neutrino physics:
 - Neutrino Factories and MICE at RAL
 - DUNE (Fermilab & South Dakota) & proto-DUNE (CERN)
 - Hyper-Kamiokande (Japan), ANNIE (Fermilab)
- Dark Matter (LUX,LZ) in Homestake mine, South Dakota
- Future colliders (ILC, CLICdp, FCCpp)

Theory:

- Lattice field theory for LHC, g-2, flavour physics at DiRAC facility & elsewhere
 Working with HPQCD, QCDSF and RBC/UKQCD collaborations
- Phenomenology for LHC, cosmology & beyond: nnPDF, HEJ, flavour anomalies, warm inflation, TopFitter
- Formal theory: little Higgs, Supersymmetry, extra dimensions
- Turbulence, links to condensed matter
- **Computing & Data Analysis**

Particle Physics Experiment 2016/17 Research Highlights

SUPA

Particle Physics Experiment 2016/17 Detector Developments

prototype in Glasgow

LHCb upgrade and Hyper-K photon detector in Edinburgh

Particle Physics Theory2016/17 Research Highlights

SUPA

soft anomalous dimension PRL117, 172002

SUPA Particle Physics: Beyond Research

Medipix3 silicon pixel detector developed at CERN with Glasgow participation. Glasgow collaborator on demonstration of Medipix3 for electron microscopy.

DESTINATION :

SPACE

National Museum of Scotland, Edinburgh: NEW Particle Physics gallery with Edinburgh & Glasgow physicists featured plus ongoing engagement with NMS with teachers & pupils.

Destination: Space co-authored by Christoph Englert Shortlisted for Blue Peter Book Award

> http://www.nms.ac.uk/explore/stories/science-and-technology/cern-accelerating-cavity/ http://www.booktrust.org.uk/news-and-blogs/news/1437

> > http://www.gla.ac.uk/schools/physics/news/headline_515843_en.html

Particle Physics Experiments: Active Developments

SUPA

Particle Physics Experiments: Active Developments

Long baseline neutrino experiments: fire neutrinos underground to determine precision measurements of neutrino properties, with data taking starting ~2026

• DUNE (Fermilab to South Dakota)

SUPA

• Hyper-K (Japan, maybe to Korea)

Both experiments both in *preconstruction* phase with SUPA involvement STFC could fund *construction* grants starting ~2020

Particle Physics Experiments: Potential Areas for Development

Possible future colliders:

- **CLIC** e^+e^- 450 GeV, 1.5 GeV & 3 TeV, at CERN
- ILC e^+e^- 500 GeV and 1 TeV, in Japan
- FCC e^+e^- 250 GeV & pp ~100 TeV & ep at CERN
- No decisions likely to be made before ~2020.
- 5-10 year to build
 - High energy LHC (28 TeV) is another option

SUPA

Particle Physics Experiments: Potential Areas for Development

Possible future colliders:

- CLIC e⁺e⁻ 450 GeV, 1.5 GeV & 3 TeV, at CERN
- ILC e⁺e⁻ 500 GeV and 1 TeV, in Japan
- FCC e⁺e⁻ 250 GeV & pp ~100 TeV & ep at CERN
- No decisions likely to be made before ~2020.
- 5-10 year to build
 - High energy LHC (28 TeV) is another option

CLIC Higgs Physics Prospects arXiv:1608.07538 coupling relative to SM CLICdp o 350 GeV model dependent + 1.4 TeV + 3 TeV

SUPA Potential Areas for Development

- Theoretical exploitation of LHC and future experiments
 - Phenomenology beyond the SM
 - Parton Distribution Functions for the LHC
 - Precision lattice QCD results (g-2, flavour, fundamental parameters of the**QCD** Lagrangian)
 - Strong interacting Beyond the Standard Model (BSM) and lattice (composite Higgs models)
 - Theoretical tools for perturbative computations at higher orders (amplitudes, new methods in Quantum Field Theory)
 - Lattice QCD: adding QED effects, development of algorithms and supercomputing hardware
- Interdisciplinary applications:
 - Innovation in theoretical methods
 - Algorithms
 - Development of hardware architectures
 - Spin-offs in other fields: mathematics, informatics/data science and exascale programmes

SUPA Potential Areas for Development

Higgs Centre for Innovation

CDT in Data Intensive Science: Glasgow, Edinburgh, St Andrews in particle, astro and nuclear physics

- Research Council reorganisation
- UK government's industrial strategy
- Review of the PP courses delivered by SUPA
- Edinburgh is planning a new MSc in data analysis in particle & nuclear physics to start in 2018

SUPA) Concluding Remarks

- LHC exploitation experimental and theoretical remains top priority
 - Phenomenology and Parton Distribution Functions
 - Detector operations and data analysis ۲
 - Detector upgrades
 - Exploitation and interpretation of other experiments: NA62 & MICE, g-2 & PLANK satellite

Developments for the future

- Installation of LZ for dark matter searches
- Future long-baseline neutrino experiments are a major new priority for STFC: we are already ۲ engaged in Hyper-K and DUNE
- SUPA physicists are leading efforts in future colliders collider both in theory & experiment we will be prepared if these facilities are chosen
- Developments in precision lattice QCD & formal theory
- Detector technology ۲
- Collaboration is in the DNA of particle physicists particle physics does not happen without collaboration.
 - But we need to work more to bring our collaborative skills outside our research to further our impact e.g. in medical & industrial applications, data science, education ...

UPA Particle Physics: Awards & Major Roles

- Awards in 2016/17:
 - Peter Boyle: Royal Society Wolfson Research Merit Award
 - Greig Cowan: IPPP Durham associateship
 - Christine Davies: APS Fellowship
 - Tony Doyle: RSE/Lord Kelvin Medal
 - Peter Higgs: Royal Commission for the Exhibition of 1851 Medal
 - Victoria Martin: CERN associateship
 - Franz Muheim: IPPP Senior Experimental Fellowship
 - Jennie Smilie: ERC starting grant
 - Alan Walker: honorary degree (D. hc), University of Edinburgh
- **Major Roles:**
 - Craig Buttar: ATLAS UK PI, 2019-2021 (Deputy, 2016-2018)
 - Christine Davies: member, STFC Science Board
 - Christine Davies: Project Management Board for DiRAC HPC Facility
 - Richard Kenway: appointed to STFC council
 - Victoria Martin: Chair, STFC Project Peer Review Panel 2016-17
 - Alex Murphy: Chair, LUX Executive Committee
 - Alex Murphy: Experiment advisory committee for SNOlab
 - Aidan Robson: Chair, CLICdp Institute Board
 - Paul Soler: MICE UK PI