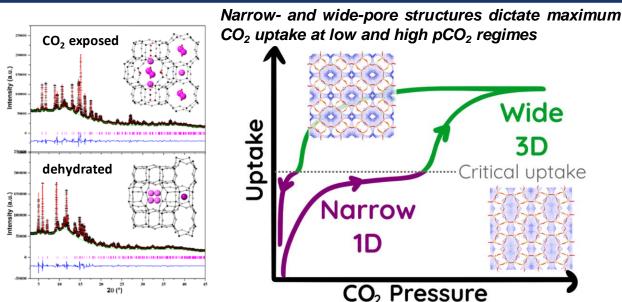


A Structural Study of Zeolite MER: Cations, CO₂ and Cooperativity

Elliott L. Bruce¹

Additional Author(s): Veselina M. Georgieva¹, Ruxandra G. Chitac¹, Magdalena L. Lozinska¹, Anna M. Hall¹, Claire A. Murray², Ron I. Smith,³ Alessandro Turrina⁴, Paul A. Wright¹


Institution(s): ¹School of Chemistry, University of St Andrews; ²Diamond Light Source; ³ISIS Neutron and Muon Source, ⁴Johnson Matthey Technology Centre, Chilton. Funder(s): EPSRC, Johnson Matthey

Abstract

Zeolites are porous materials which can distort upon dehydration. Li-MER is one such material, decreasing unit cell volume by 13%. This narrow-pore phase (1D diffusion) expands to a wide-pore form (3D) upon CO_2 adsorption at critical uptake, accompanied by kinks in adsorption isotherms. Expansion occurs cooperatively via an intermediate phase. Varying cation content alters the distortion and inflection point.

Project Description

- X-ray and neutron diffraction studies and subsequent Rietveld refinement allows structures of materials to be found.
- Extra-framework Li⁺ causes the MER framework to distort greatly upon dehydration. Li⁺ was exchanged for larger cations (Na⁺, K⁺, Cs⁺) to give binary cation series. This increases unit cell volume and shifts the inflection point seen in the CO₂ adsorption isotherm to lower pressure.
- Variable pressure experiments examines structural change upon adsorption. These studies suggest that expansion proceeds via an intermediate phase. Expansion from the intermediate- to wide-pore form is cooperative, and is responsible for the step in adsorption isotherm.

Engineering and

Johnson Matthey Inspiring science, enhancing life

Physical Sciences Research Council

EaStCHEM

Key Results)

• Li⁺ greatly affects zeolite MER framework

JM

- Causes 1D channel connectivity for CO₂ percolation
- Expands to 3D connectivity with sufficient pCO₂
- Introducing larger cations shifts transition to lower pCO₂
- Critical uptake occurs at with cooperative intermediate \rightarrow wide-pore transition

This paper: Georgieva, V. M.; Bruce, E. L.; Chitac, R. G.; Lozinska, M. M.; Hall, A. M.; Murray, C. A.; Smith, R. I.; Turrina, A.; Wright, P. A. Cation Control of Cooperative CO₂ Adsorption in Li-Containing Mixed Cation Forms of the Flexible Merlinoite Zeolite. *Chem. Mater.* **2021**, *33*, 1157–1173.

Or click here: <u>https://doi.org/10.1021/acs.chemmater.0c03773</u>